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I BACKGROUND

In the study of the Earth's ionosphere, there are many problems that
require a detailed knowledge of the electron distribution function. The
electrons are produced primarily by the photoionization of the ncutral particles
in the atmosphere¢ by the electromagnetic radiation from th. sun, and by
secondary impact ionization of the atmospheric constituent: by the primiry
electrons. The clectrons undergo various collisional interactions with the
atmospheric particles and a steady-state distribution is rcached. In the auroral
atmosphere, ionization can also result from the precipitation of the high energy
(keV) electrons and protons. Once the electron distribution function is deter-
mined, ionospheric properties of interest can then he calculated. With the
advent of rocket-borne and satellite electron spectrometers it is of interest
to pursue detailed theoretical studies of the photoclectron distribution as

well as of the electron density profile in the auroral ionospherc.

The Space Data Analysis Laboratory (SDAL)} of Boston College was contracted
by the Ionospheric Dynamics Branch (PHI) of the Air Force teophysics Laboratory
(AFGL) to develop analytic and computer techniques for theorctical studies of
the ionospheric electron distribution function. This report is a summary of
the work performed under the auspices of SDAL duriny the period covered by the

contract.
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2 PHOTOELLECIRON FLUX (N EARTI'S LONOSPULRE AT ENERGIES NEAR THE
PHOTCIONIZATION PEAKS
Iln this work Boltzmann-Fokkcer-Planck (BFP) theory is usecd to analyze the
(isotropic) photoelectron flux in the Earth's ionosphere at cnergies in the
vicinity of photoionization peaks, where the electron impact cross-sections

arc slowly varying functions of energy.

2.1 GREEN'S FUNCTION SOLUTION FOR THE PHOTOELECTRON FLUX

In the steady-state, local approximation an equation for the isotropic part
of the electron distribution function is obtained by integrating the BFP equa-

tion over the angles in velocity space. The equation in the energy representa-

(SFO)
) , (1)
ot coll

tion is
6]"0
0= -2
(at) *
pl

where the terms on the right-hand side are given by Eqs. (7) through (15) of
Jasperse (1976) and in Jasperse (1975). At energies in the vicinity of photo-
ionjzation peaks the momentum transfer, excitation, and ionization cross-
sections are slowly varying tunctions of cnergy and, as a result, this equation

may be approximated by

5
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where I is I times the isotropic part of the electron distribution function
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divided by F , and where
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Here, Qm . arc the momentum transfer cross scctions, Qik ave the impoct
excitation cross sections for clectronic transitions, Qiik arc the impact
ionization cross scctions, 6) = 2m/Mi where mois the electron mass and M, is
the neutral particle mass, and In A is the Coulomb logarithm. The neutral
particle densities are denoted by n with an appronriate subscript denoting the
type and state of the neutral particle, the neutral particie temperature by Tn
(in eV), and ng and Te denote the analagous electron quantitics. The angular
brackets denote an energy average. In deriving Eq. (2) rotational, vibrational,
fine structure, electron-ion, de-excitation and recombination processes were
found to be negligible. The production of scconduary clectrons by electron
impact ionization was regarded as a known sourcc by using the continuous slowing-
down approximation and was included in §. In treating impact excitation of the
electronic states, terms of the form

- (% o T on, < (E+A..) O, (E+p. ) > H(E+A.)

m) ik j Uik )k “jk R ’

where Ajk are the threshold energies, were also neglected. It is actually
possible to solve Eq. (2) with thesc terms included using mathematical methods
more general than the ones prescnted in this paper. Thesc terms produce
approximately a 5% cffect at energies in the vicinity of a peak produced onty

by photoionization. These more general results will be published clscwhere.

Eq. (2) can be solved if we are able to tind the Green's functions which
satisfies
2
4wy olow,e = sl (3)

-a <
dEZ dE

subject to appropriate boundary conditions. Here, S(E-E') is the Dirac delta

function. The photoelectron flux, ¢(L), is then given by

1 2\?
o(E) = (4m) (ﬁ) E dE' G(E,I') S(i') . (4)
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Using standavd methods we obtain

cxp [+a?(ﬁ-h')] , LB,
1

TS S
G(L,E") a(a1+a,)

exp [-al(E—R')] , E=BE' . (5)

where the boundary conditions that G > 0 as E » « and that G have no rising

{ solution as £ » 0, have been imposed. Here

1 2 R vz
a = Py (b +4‘m) + 35 (6)
, 1/2 L
m: = éa &“+4uc) - %ﬁ . (7)

2.i.1 Two lhotoeclectron Sources

The first photoclectron source we examine is that duc to a continuously ¥
decreasing source and an isolated unbroadened photoionization source. *»
S(E) = 8 xp(-I/E + S - . 8 i

(k) o CXp(-I/E ) p S(E-E)) (8)

Using liq. (4), the photoelectron flux is !

/2 .
. ) -1 {2 I \
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Above about 260 km clectron-neutral particle collisions are d .reasing rapidly
2
and clectron-clectron collisions dominate. This implies that b »dac and that

@ l/TC o, Zc/chnC. Since the continous source decrcascs slowly
o I/lk‘; an approximate solution is
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Sl
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At high altitudes we sce that the photoclectron tlux has a cusp at E, and a line

+

1
shape that is asymmetric about El. The forward and backward half widths at the
1/e point are
FHW = T, (13)
- %) .
BHW Ycenc,-c n nC/n(O) s ()

where n(0) is the atomic oxygen density. At low altitudes electron-neutral
2
particle collisions dominate electron-eclectron collisions and b v<dac. It

5
follows that a Ta, = (c/a)l/" Ta > l/lio and

1/2 . S
o (E)=(4m) ! (%) _“—ET77'{69' exp(-E/L )
(ac) /'~

+ El-e\ (-a|E-E D) } (15)
2 °%P 1 :

The photoelectron flux again has a cust at El and the lince shape is svmmetrivc

o]
with a half width given by (a/c)Y/2.

The second photoclectron source we examinc is that due to a continuousiv

decreasing source and the isolated photoionization source that is broadened.

S(E) = S0 cxp(—E/Eo) + S1 r(E) , (16}

where r(E) is a rectangular function of height 1/2I and of width 2I' centered

about El' The photoelectron flux is given by Eaq. (9) with fl replaced hy f1

where
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a,l

1
Note that ¢ has a rounded top and a continuous first derivative in the
vicinity of Ll. Note also it is asyvmmetric at high altitudes (u1>u2) and sym-

metric at low altitudes (ul=m,). At altitudes above 260 km the forward half

sinh(F/TC)
NEITE T —_—
FIW FC+IQ In (P/To)

R ] l—cxp(-r/Tc)
-In —2— + ———.3—(]7—,1,—03—‘ (18)
L

-

For simplicity we have neglected the shift in the location of the peak. For I

comparable to TC FIIW is approximately ToT - T, In 2. At low altitudes the half

width is
.\ 1/2 1/2
W = Gi) + Q}) {1n [sinh(r(c/a)l/z)]
C C
~In [l—cxp(-?(c/n)l/zﬂ } . as)
1/2

For large I'(c/a)

(n/c)]/2 + 1,

comparced to 1, W is approximatcly given by (l-1n 2)

2.2 RESULTS

Using the model ionosphere same as that given in Jasperse (1977), and using
the Jacchia (1977) madel for ncutral atmospherce, we have calculated the theoreti-
cal photoelectron tlux in the vicinity of the 27.2 ¢V peak at threc altitudes.
Results of these calenlations are given in Jasperse and Smith (1978). The

27.2 ¢V peak was chosen as it is isolated and is produced only by photoionization




s o -

In comparing these calculations to the experimental results of Docring et al
(1976), we scc that the observed asymmetry and shift of the photoionization

peak as the altitude increases is qualitatively cexplained by the BEP theory.

REFERENCES
Doering, J.P., W.K. Peterson, C.0. Bostrom, and T.A. Potemra, High rcsolution
daytime photoelectron energy spectra from AE-L, Geophys. Res. lett., 3,

129, 1976.

Jacchia, L.G., Thermospheric temperature, density, and composition: New

models, Smithson. Astrophys. Obscrv. Spec. Rept., 375, 1977,

Jasperse, J.R., Electron distribution function in a nonuniform magnetized
weakly photoionized gas application to a model ionosphere, AFCRL Rep.
TR-75-02066, 1975.

Jasperse, J.R., Boltzmann-Fokker-Planck model for the clectron distribution

function in the Earth's ionosphcre, Planct. Space Sci., 24, 33, 1976.

Jasperse, J.R., Electron distribution function and ion concentrations in the
Earth's lower ionosphere from Boltzmann-Fokker-Planck thcory, Planet.
Space Sci., 25, 743, 1977.

Jasperse, J.R. and Ed R. Smith, Geophys. Res. Lett., 5, 843, 1978,

cedia

e -

B UV
P )

XN e




3 COLLISION OPERATOR STUDY

We have completed o systematic study of collisional operators based on

the "velocity-ratio" expansion technique introduced originally by Schuller and
Wilhelm!. This technique has been developed extensively by Ségur and
Lerouvillois-Gaillard?, and is applicable to all types of collisional processes
involving light and heavy particles. It is particularly convenient when con-
sidering the impact of clectrons with atoms, molecules, or ions. This calcu-
lational procedure considers systematically the dominant effects of the number
density, temperature, drift, velocity-correlation tensor (or stress tensor) of
the heavier specics on the collisional operators of the transport equation for

the distribution tunction of the lighter species.

In our study. we have considered the effects of ionization, dissociation,
cxcitation, de excitation, recombination, and Coulomb forces on the collisional
operators.  The following is a summary of the specific results of our investi-

st jon,

3.1 COLLISION OPFRATORS VIA SCATTERING PROBABILITIES

In considering collisions betwecen clectrons and neutral! species, we found
it convenient to cmploy the '"scattering probability' formulation of the
Boltzmann-like operator. This idea was discussed by Waldmann3 and used
extensively by Desloge™ and Sépur and Lerouvillois-Gaillard?. [t allows us
to treat all Bolt.omann-like collision operators from a single unified viewpoint.
We have used this procedure to consider the inclastic scattering between

electrons and neutral species and electron-neutral impact ionization processces.

3.1.1 Inclastic scattering Between lectrons and Neutral Species

We have considered the inelastic scattering of necutral particles (atoms)
and molcecules) with colliding clectrons. The atoms or molecules are allowed
to undergo excitation and de-excitation processes. Principle of detailed
balance is usced to obtain the final orm of the collision operator. The dis-
tribution functions of the neutral particles are assumed to he given but their

functional forms «an be quite arbitrary.

L—.———‘—-—W SIS I SIS UOT




i) We have derived the collisional operator for excitation processes
to second-order (in velocity-ratio) for an isotropic neutrul
1 distribution function. This result is the generalization of the
classical expression developed by Holstcein”. In the original
expression of Holstcin, the collision operator depends only on the
number density of the colliding necutral species and the differential
cross section. In our second-order calculation, the neutral tempera-
ture is also included in the final cxpression.

We have written the operator in an expanded form by writing the
electron distribution function in spherical harmonics ot the angles
of the (electron) velocity vector. The first two moments of the ;
operator have been obtained explicitly. They correspond to the ’
isotropic part and the first anisotropic contribution of the colli-
sion operator. As a check, we have shown that in the limit of zevo
excitution encrgy, the isotropic part of the collision operator
reducces to the classical Fokker-Planck form of the elastic collision
operator.® Thus, the elastic collisional contribution is a sccond-
order effect in terms of the ratio of the velocities of the colliding

neutral particle and electron. 1t is not contained in the original

Holstein expression. j

ii) We have derived the corresponding collision operator to sccond
order for de-excitation processes for an isotropic neutral distribu-
tion function. This is accomplished by applying the "principle of
detailed balance" to the cxcitation and de-cxcitation processes.

By expanding both the excitation and de-cxcitation operators in
Taylor series in tcrms of the excitation energy and summing the
resulting expressions, we ohtain a generalized version of the
Ginsburg-Gurevich-Allis’ form of the isotropic part of the collision
operator. In this calculation, we have assumed guasi-equilibrium
of the neutral species and applied the Saha equation. Thus the
effect of the neutral tempecrature is introduced in the collision
operator through both the second-order velocitv-correlation func-
tions of the neutral specics via the velocity-ratio expansion
technique and also through the expansion of the Saha cxpression.

R

Our expression reduces to the classical Fokker-Planck form if only
the terms to zeroth-order in velocity-ratio and sccond-order in
excitation-energy arc retained. [We note that this expression still
contains the neutral temperature because of the Saha cquation]. To
second order in velocity-ratio, however, the structurc of this
collision operator is morc complicated than the original Fokker-
Planck form. We must be careful of not double-summing the clastic
terms. Now the opcrator contains both first order and higher- ;
order terms in excitation energy, as well as third and fourth order j
derivatives of the clectron distribution function.

- ——— e e+ e e~ =

iii) We have derived the collision operator to first order (in velocity-
ratio) for inelastic impact for am anisotropic neutral distribution
function. This expression contains both the number-density and
drift-velocity of the neutral species. We have expanded this
operator in spherical harmonics of the angles of the (electron)

i . " il . cmanubibibilaintiatinioins e - d—t e ;J




velovity vector.  Since the spherical harmonics are no longer
cigenfunctions of the collision operator, we tind that the isotropic
portion of the collision operator depends on the anisotropic part
of the clectron distribution function and vice versa.

3.1.2 Electron-Neutral Impact Iionization

We have considered the collision process of electrons and neutrals such
that the neutrals are singly ionized by emitting sccondary electrons. For
simplicity, we have assumed that the ncutral distribution function is isotropic.

Thus, we shall neglect the effect of neutral drift on impact ionization.

The collision operator is found to depend on a double differential cross
section as discussed, c¢.g., in Mott and Masscya. To second order (in velocity-
ratio), our expression depends on the number density, and temperature of the
neutral species.  We have cxpanded the operator in spherical harmonics of the
neutral species. We have expanded the operator in spherical harmonics of the
(electron) velocit  vector. The resulting expressions depend on the partial
range integrals ol the double differential cross section. Because of the
impact and sccondary electrons are indistinguishable after the collisional
process, a factor »f two (2) is introduced in some of the partial-range

inteprals.

To zeroth order (in velocity-ratio), the isotropic portion and the first
anisotropic moment of this collision opecrator reduce to the expressions

derived previously by Jasperse.?

3.1.5 Collision Cperator for Dissociative Recombination

We are primarily interested in the recombinative processes of clectrons
with molecular ions such that the molecules are dissociated into two atoms
(or molecules) upen collision. The inversc of such a process does not involve
collisions with the electrons and this portion of the collision operator is
independent of the clectron distribution function., It is cssentially a "source
term”. Thus, it vill be convenient to consider the collision operator in two
distinct parts: one involving the forward process which is a linear function

of the clectron distribution function and the other a source term.

To consider the part of the collision operator involving the forward
recombinative process of clectrons with molecular ions, we cxpand the differen-

tial cross scction in terms of the "ion-electron velocity-ratio'". The result

10
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is a simple expansion of the collision opcrator for recombinative processes.
The effects of the number density, drift, and temperaturce «f the ion species
come in naturally. To the zeroth order of this expansion, our result agrecs

with the classical expression. (Sec e.g., Jaspersc?.)

3.1.4 Effects of lon Drift on the Fokker-Plunck Operuator ‘or Electron-
Ton Collisions

It is known that the Fokker-Planck form of the collisicn operator for

charged particles can be deduced from the Boltzmann cquati.n!®, Liouville

Theorem or Markov processcs!?. In considering clectron-ion collisions and the

A

collision operator, it has been customary to assume a Maxw-1llian distribution

for the ions. It is quite straightforward to generalize thic expressions to

i o

arbitrary ion distributions using the velocity-ratio expan.ion technique. We

have systematically derived the expanded operator to include the effects of
the ion-drift and ion-stress-tensor. We have again splitt.d the resulting
operator into an isotropic part and the first order anisotvopic moment. Our
results reduce to the classical expression in the limit of zero ion drift and

isotropic ion distribution.

3.2 INTEGRATION OF THE ELECTRON TRANSPORT EQUATTON IN APP'LIED ELECTRIC

AND MAGNETIC FIELDS

We have extended the previous calculations®® ot the clectron distribution
function in the collisional region of the ionosphere to include the cftfects of
the local electric and magnetic fields. In a local approximation, we shall

assume that the E,B-fields are given. We found that the integration of the

electron transport cquation can be accomplished conveniently if we project

the electron distribution function in three (3) spccial dircections:
i) the direction of the electric field,
ii) the dircction of the magnetic field, und

iii) a direction normal to both the electric and magnetic ficld.

We found that if, for the isotropic portion of the ccllision operator, we
i) neglect recombination and attachment,
ii) wuse the Ginsburg-Gurecvich-Allis form of the inclastic collision

operator, or expand the inelastic operator [to zero order of the
velocity ratio] in Taylor scrics in terms of the excitation energy,




iil) linecarize the clectron-electron collision term,
iv} mncglect the neutral and ion drifts,

v) approximite clectron-neutral impact ionization as an cexcitation
process and expand in Taylor series in terms of the cxcitation
energy,

vi) consider photoionization, and the secondary clectron production
due to electron-nceutral impact (estimated by the continuous slowing
down approximation) as known sources, and use a combined collision
frequency for the anisotropic part of the collision operator, the
clectron transport equation can be integrated in terms of simple
yuadraturcs. Interestingly, these quadratures can be integrated
explicitly for simple but realistic variations of the cross
sections as a function of the electron energy.

We note that the above integration is accomplished by simultaneously

considering the isotropic and anisotropic portions of the transport equation

for the clectrons.

3.3 INTEGRATION OF THE ELECTRON TRANSPORT EQUATION IN THE ABSENCE OF AN
ELECTRIC FIELD
In the absence of the elhetric fiecld, we can integrate, in local approxi-
mation, the clectron transport equation perturbatively. If we use the same
type of approximations suggested in Section 2 for the collision operators,
the isotropic part of the clectron transport equation can be integrated
explicitly., This cxpression is probably only valid in the electron energy
range 20 ¢V, hot should be quite accurate for the photoionization peaks regime

and higher electron energy ranges.

The anisotropic purt of the electron transport equation in terms of a
single combined collision frequency can also he integrated in the presence of

an applied magnetic tield.

In an carlier study, Jasperse and Smith3€ calculated the photoelectron
flux in the vicinity of photoionization peaks in terms of a local Green's
function solution for the isotropic part of the electron distribution function.
We have applied the same idea to calculate the anisotropic cffects in the

prescnee of an applied magnetic field near photoionization peaks.

3.4  SUMMARY

We have comploted a systematic study of the collision operators that appear

in the electron transport cquation using the velocity-ratio expansion technique.

12
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Processes involving inelastic impact, excitation and de-cxcitation, ionization,
dissociating, recombination and Coulomb collisions have becen considered.  We
believe this rescarch is the most comprechensive and systematic investigation

of the collision operators for the scattering of light particles by heavy

particles at the present time.

Upon making some plausible approximations we arc able to integrate the

electron transport cquation in the presence of clectric and magnetic ficlds in

the local approximation. I
We are in the process of preparing two sceparate manuscripts reporting 'L

these research findings.
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4  ELECTROSTATIC PLASMA INSTABILITIES OF LE-REGION PHOTOLLECTRON
DISTRIBUTIONS

4.1 INTRODUCTION

An ionized repion exists in the Larth's upper atmosphere, which extends
from about sixty kilometers above the Earth's surface to several thousand
kilometers and beyond. At low latitudes during day-light hours, this ionized
region results primarily from the photoionization of the neutral atmospheric
constituents by cluctromagnetic radiation from the sun. In the study of this
ionized region there are many problems of interest which require a detailed
knowledge of the clectron energy distribution. Once the distribution function
is known, various important physical quantities, such as the volume emission
rates for the air glow radiation, electron heating rates, and clectron

temperature protilss, can be calculated.

Theoretically. the electron distribution function can be determined by
invoking appropriate encrgy balance between the photoelectron production and
the losses due to various inelastic processes.  Several authors have investi-
gated this problem. Most recently, Jasperse! has developed a complete kinetic
theory, using the Boltzmuann-Fokker-Planck method, in the sensc that it deter-
mines the electron cnergy distribution and the ion concentrations in the lower
ionosphere (LI region) sclf-consistently, once the boundary conditions and the
model ionosphere are specified. The low cnergy spectrum of the isotropic part
of the distribution function is Maxwellian with temperatures a few hundredth
of an ¢V. In the -‘uprathcrmal part of the spectrum, most intercsting featurce
occurs hetween 2 and 4 eV cenergy. In this energy range, the distribution
function has a mintmum at about 2.3 ¢V (Fig. 1). This is explaincd theoreti-
cally, since the ¢ oss section for the electron-impact excitation of vibration-
al states of N, ha: a maximum at 2.3 ¢V. Beyond 2.3 ¢V, the photoelectron
flux risces sharply to a maximm at about 4 ¢V, as the excitation cross section
decreuses sharply.  Beyond this cnergy the flux falls off as the cross section
for the excitation of metastable states of atomic oxygen increases. The
theoretical calculitions (Fig. 1) show that this minimum in the spectrum is
more and more provunced at or below altitudes of 130 km.  Above 130 km, the
valley starts to be filled up, the peak-to-valley ratio decreases, until at
or above 210 km the structure disappears completely.  This disappearance can
be attributed to tne depletion of N, as well as to the gradual smoothing process

arising from clectron-eclectron collisions as the altitude increases.
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Measurements of the electron cnergy distribution by Docring Sl.ﬂl? and, most
recently, by McMahon and Heroux®, who studied specifically the 2-5 ¢V energy
range with improved energy resolution of thc appavatus, arc in good agreement
with the theoretical calculations of Jusperse! at and above 170 km. Below

170 km, the calculated values of the peak-to-valley ratios by Jaspersc is
somewhat larger than the observed valucs. The observation: are in most striking
disagreement with the theory below 130 km, wherc they show plutecaus in the

distribution functions in the 2-4 eV cnergy range.

This discrepancy between theory and observations suggests that in the low
altitude regions (100~170 km) collisional processcs along cannot account for
the observed photoelectron distributions. It is well-known that a homogencous

plasma in a magnetic field with isotropic distribution tunctions, can he

unstable if a population of high cnergy particles is also present. This is

precisely the situation in the lower ionosphere, and it is cxpected that the

plasma instability will produce the anomalous diffusion in the velocity space

... S

through wave-particle interaction, which in turn will flatten the distribution
functions in the 2-4 eV energy range. With this in mind, ¢ consider here
excitation of electrostatic instabilities in the ionospher:c¢ collisionual plasma p
by the suprathermal electrons near thc 4-eV maximum (Fig. {). In particular,

we consider the two most important instabilitics, namecly, the upper hybrid

instability and the electron cyclotron instability; and di:.cuss the linear

. Ear— T

growth rates and the wave spectra as functions of altitude  Bloomberg" has 3
investigated the upper hybrid instability using thce theoretical clectron dis- ‘

tribution function of Dalgarno gz_glf. His calculations show that the instability

is inoperative at or below 100 km duc to large collisional damping rate. Since
Jasperse! gives more accurate3 theorctical clectron distribution functions and

since we now have more accurate data for determining the rclevant collision

frequencies, it is worthwhile to reexamine the upper hybrid isntability. }

In Sec. 4.2, we present the mathematical formulation leading to the dis-

persion relation. In Sec. 4.3, we solve the dispersion relation and determine

the various growth rates, and the spectrum of the unstablce waves.

4.2 MATHEMATICAL FORMULATION

Since we intend to study the instabilitics driven by the suprathermal

electrons near 4-eV maximum (Fig. 1), we assume that the cquilibrium electron

15
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population is composcd of only two parts: o Maxwelltian (thermal) population, i
and a suprathermal one with monotonically decrcasing cnergy profile peaked at

4 ev. This is indicated by dotted lines in Figure 1. 1n doing so, we have
ignored the high cnergy photoionization peaks in the tail of the actual electron
distribution function. We further assume that the positive ions form a
neutralizing background of constant density. This is justified since we
consider waves with frequencies wzw e’ where w e is the electron plasma fre-
quency. Then the small amplitude perturbation of the electrons is governed by

the following cquations:

35._ o af‘j o IF . i
. . .- 2t p o 2L . 1 :
e Y Efj me (v x‘go) v m E v, C(fj) (1) !
‘ e 43 , ‘
Vell = -dpe X Iii dv (2) i
id |

whorL~JL\ is the cavth's magnetic ficld, which is assumed to be uniform,

l}[lxx,t) is the perturbed clectron distribution function, Foj(v) is the

equilibrium clectron distribution function isotropic in velocity space, and L
~
is the clectric ficld associated with the density perturbation. The index j

labels the two Kinds of clectron population,

The collision term, C(fi), in Eg. (1) represents the electron-electron,
clectron-ion and the clectron-neutral collisions. Explicit forms of these
colliston terms can be tound in Ref. 6. In a weakly ionized gas such as the
low altitude ionovphere of our interest, the frequencies of clectron-electron
and clectron-ion collisious are small in comparison with the neutral and we
need consider only the clectron-neutral collisions. Furthermore, inclastic

clectron-neutral ohillisions are much less frequent than the elastic ones,

However, the conmplexity of the exact clastic collision term makes the analvsis

intractable.  To avoid this, we use a B-G-K type?

C(fj) = _ijj + vj(nj/noj) Foj(v) (3)

wherco

n. = If.dsv
1 1

is the perturbed cicetron density, noj is the cquilibrium density, and v, is
- . . J
the sum of the frogquencics of ciastic collisions between the i type electrons

and the various neatral particles (N, 0, 0, cte.) present in the ionosphere.

“ -
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This particular choice of the collision term, which conserves only the number

of particles, is adequatc to describc the electron-neutral collisions.

We notice that Eq. (1) can be written as

df, R BFO. n,
_ldt + vjfj = E- ——l-ax v (r_—) Foj 4)

o)

where d/dt is the convective derivative taken along the unperturbed clectron

orbit in the magnetic ficld Eo' Integrating Eg. (4) with respect to t we

obtain
ft viler-ty o al?oj n )
£= [ are wECTE) ey S Ry () (5)

where r“(t”) and Y°(t") are the unperturbed electron orbits. Since the
collision frequency is much less than the cyclotron frequency, the electron

orbits in lowest order are given by

v v
cx = - A g L Sinte-o
xT-x = - & sing + 5 sin(¢-St)

v v,
y'-y = =5 cosé - 5= cos($-Q1)

Z -2 = -V“T

veE Yy cos(¢-Q1)
v; =V, sin(¢-Q1)
Vo T Y

where 1 = t-t”, and we have chosen a cylindrical coordinate system in the
velocity space with the z-axis along_go, so that v = (v,cos¢,v sine,v, ). The

orbits are taken to satisfy r”(t~"=t) =_5,x’(t‘=t) =y, and Q = eBo/mc is the

electron cyclotron frequency.

We use E = -Vo, where ¢ is the electrostatic potential, and choose

perturbations of the form f = % cxp(ib-v-iwt). Then

sl uo i anfin).

b




" . . . albh 1] L
f»(}:'.w.V) de -t gk )x cos (-1 ) —ﬁ*’— + v sin(t-01) —;?*L
i - X ] m o - vy
] s
. 0
+
.)V“
vj .
: > ik - “-r) 1(w+iv,) T 6
+ o nnﬁ&,w) }oj(v) exp ik ¢ (r7-x) + i(w J) (6)

where we have used Foi(v‘) = Foj(v). Integrating Eq. (6) over velocity space
we can find ni(k,w) in terms of $(53w)' Substituting for r”-r and using
azimuthal symmetry of the problem we can readily perform the ¢-integration in

velocity space and then the t-integration.® The result can be expressed as

. N.
) I -
nj(}:,w) - n‘ !(}i"u) ( )
where
k v
o 2. 74
N (k Lk o 2ae z dv dvy, 09 :
i( L’ N’w) oom WYY GV T T K v, onn
- n=-o j 0wn
) oF
o [ —f—q-'— + k‘ ———-!-,)o (8)
VL. RAY \ ¢v“
and
K v
w 2
Zn\).li z -];‘(%‘L)
1 . ——— h 9
Di(KL,k”,uJ 1 = dw\deyL FES T (9)
: 0] n=-® i vl

Substituting ni irto the Poisson cquation (2), we obtain the dispersion relation

2

AL S T S (10)
e

y

2
where k7 - ka + K .
4.3 STABILITY AN.LYSIS

4.3.1 Resonant T pce Instability

Here we look for instabilitics that arise due to wave-particle resonant

interactions.  The waves are supported by the Maxwellian electrons, while they
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arc driven unstable by the suprathermal clectrons near the 4 ¢V peak, which
are in resonance with the waves. The resonance condition is W, o- k“v“: ni, w

being the real part of the frequency. We first consider the properties of the
) waves by solving the dispersion relation without the suprathermal clectron

term, i.e., we solve the cquation

]

R L) B (1)
K"\ m

where the subscript m refers to Maxwellian electrons. For Maxwellian clectrons
with density ng and temperature TC, the integrations in N und D can be carried

out in a straightforward manner and the results are

eno n 1/2 w + ivm © b
Nm = = 1 + 5T — Z(pn) ]n(h) e (12)
e ¢ ‘k“| &=
1/2 iv @
m m -b
D=1+ (3 D o) 1,00 ¢ (13)
e lk“ oo

Here Z(pn) is the plasma dispersion function, I, is the modified Bessel function
. . _ . 1/2 _ .2 2 .

of first kind, ey = (w+1vm~nﬂ)/[|k\J(2TC/m) 1, b= k1 Tc/(n m). We shall

consider waves for which]pn|>>1 for all n. This enables us to ignore the

Landau damping. Using the asymptotic cxpansion for the Z function® and keeping

the significant leading terms, we get

_ 2 -
en i Ioe b n 2n“uzlnc h
=24 e 0 14
Nm m (w+iv )2 ' Te g;; (w+iv )2 - nzkz ()
m m
ivm o ZnZQZIne—b
Dy = - i [ 2~ (1)
m n=1 (w+|vm) -nQ
We consider waves with kn/kl<<1’ and since vm<«w~mpe, LEq. (11), with the aid
of Egqs. (14) and (15),
. _ )
wz k2 kzc h © 2n7wT {wriv )
___pe M L‘h [ .4 Z O LR LA (16)
H ) el i) R
w(m4|vm) 1N © K" n= ml(m+ivm)“ - nfuT
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where wpc = (4nn002/m) is the electron plasma frequency. LExpanding in vm/w<<l
and keeping only the leading terms, we can write Eq. (16) in the form

oy
[N

“m ‘:c kﬁ -b
e(&L,k“,m) + ) — 1< — ¢ 1

5

[y h,- l\._ 8]
- I e ] o 2Ne}
ki o b ® Zn'm:e(w2+n_&") In
D :Z; D — =0 (17)
Mboooons (w*-n®2%)
where
22 2 -b 52
k Lk ISTITIN s C :E: " “pe n (18)
kL il wh =1 - &5 = « ) 2 22
w k kb n=l w - n"Q

If we write w = Wt iwi’ where wy < W in consistency with VoSS W then w,

is determined from

z‘(k_L,k“,mr) =0 (19)

and w. is given by
1

- [ 2 2
(v /u ) k2 C b 4n4m“ 0" 1
N m o r 4 E pe n
w, ¥ - e —— |t (20)
1 ()t /()w)u_ kZh > 9 9 &
=W, m=] (w;—n“Q—)

In deriving Lq. (20), which gives the collisional damping of the modes, we

have made use of the dispersion relation (19).

The roots of the dispersion relation in the limiting case k“=0 was first
discussed by Bernstcin.l® ‘They depend on the values of the parameters: b and
o In the cold plasma limit be<l, and, furthermorc, over the ionospheric

2 2
R /w” .
pe . 2,2
region of our interest (100-170 km) , Q /wpe/<l. Then, the lowest frequency

. ‘ ,
I | O w307 (21)

ws o 30T
pe

the next higher froquency mode is the so-called upper hybrid mode:

"*""""""llllIIlllll"""""IlIllllllllllu-u---------..-.-—-..‘

R
Sl e




The higher trequency modes (just above or just below the cyclotron harmonic

)
depending on the value of m;e/ﬂ“) arc given by (n-3,4,....;)

. n-1 2 2 2
sy =00 11 - 00" H) @’y
- - >
=ng [1+ 00" ), W o< @i @8 (23)

pe
These so-called Bernstein modes!? are separated by frequency intervals where

there is no propagation, i.c., ki < 0. In Egs. (21) - (23} there are small

2 2 i
corrections of the order of kG/k;‘<s 1, which have bcen omitted for the siake

of convenience. The corresponding damping rates arc found to he

A}, (25)

L | (26)
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respectively for the modes Wys Wy and W -

In order to find the destablizing effect of the suprathermal electrons

(denoted by a subscript h), we now consider the complete dispersion rclation:

[L.H.S. of Eq. (17)] + (4ne/k5) (N /D) = 0 (27)

where Nh and Dh are to be calculated from Egs. (8) and (9) respectively. We

write w = w_ + iwi + 1y, where 0, is the collisional damping ratc given by
Eq. (20), and vy is the growth rate. Since IFoh dy = M © M, We can assume

the the contribution of the suprathermal electrons to the dielectric responsc

function and, hence, the growth rate is small. Then, as bcefore, we obtain

E(EL,k“,mr) =0 ,

= TR - e




which determines w and

4nel lnl(Nh/l\h) |

Wi
Y= - — (28}

2 .
kT (3¢ /ow) weu_

where c(kL,k“,w) is the same as in Eq. (18). 1In doing so we have neglected

the small contribution to . from Re(Nh/Dh).

We first recognize that the collisions of the suprathermal electrons with
the neutral species will somewhat detune their resonance with the waves. As
a result, y will be less than its collisionless value. However, the reduction
is found to be negligibly small, e.g., v = Yo[l - O(vh/Q)], where vh/ﬂ << 1,
vy being the collisionless growth rate. This can be casily verified by
0
carrying out the c.lculation with a simple functional form for Foh(v), e.g.,

2

Foh = (noh/4vv;) Slv-v ), v, being the speed corresponding to the peak energy.

So, the dominant dumping is that due to the collisions of the Muxwellian

clectrons and is given by Lgs. (24) - (206). For the sake of convenience, we
shall omit Vi from Nh and Dh. Then Dh becomes unity, and since Foh is isotropic
in velocity space Nh becomes
o i ]2
20 Won  Tpk vy/®
Ny = 5 | dvy dvy 3 K Q
1 m n=s ‘V_\_ w- nV\\’n
o aF
oh
- Py =2 2
2 ]d\ v P (29)
(o]
2 2 2 . . < .
where v© = vy + v\  Substituting this into Eu. (28) and using the formula
L = p 1 - ind(w-k, v, ,~nu)
w~k“vu—nﬂ w—Ehv“—nu n'nh

where the symbol P denotes the Cauchy principal value, we finally get

22 w .
il P :
- B\ 'l".}_/fﬁl 2 f dv. 42 (kx"s.) Fon (30)
2 i . v ) k
klenl()¢ nm)mzm lizee 99 i'n " Q N . - w -ni
I "
lere F()h = 'Oh/noh. S0 thutj‘(-oh dv = 1.
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We change over to the energy representation using (. (l) = ('l/ /m /”’
(v), so that the normalization condition if 4w{G . (Li) dl =f[F ,(v) dv = 1.
oh 2 oh oh -
Here E = mv™/2 is the energy variable. In the cnergy representation, Eq. (30)
becomes
2 2 . VA
4n”(n . /n) /wneu’r 3/2 ZJ‘ alSon) o [EE,
Y= a7zl NE (31)
K; 1K (Pe/ow) \ o> e : o
where E = mv /2 is the pcak energy of the suprathermal elictrons, K“ - k‘yo/ﬂ,
K, - kLyO/Q, and Ln = ho[(wr/ﬂ-n)/ ] Integrating by paits and using a Besscl
function identity we rewrite Eq. (31) in the more conveniernt form
2
"2("oh/no) (wpzewr N Eé/- * gk 2
3 2 n f 1/"’ (l” n+l ll (32)
“\ﬂ'(ae/aw)wmnr \ « o) EE

The behavior of the functions in the integrand of Lq. (32) is shown in Figure

2. It is clear that to obtain large contribution to the integral we must choose
a value of En smaller than H“. This scts a lower limit to K,,- Tor a given
wpe/u, which depends on the altitude, w may be such that l‘/au—n 1s smallest

for n=p (say}. The corresponding lower limit for K“is fi .cd by requiring

P
that E <F . Next, we note that J© - JZ is an oscillating function of
p o p+l p-1

the argument with progressively decreasing amplitude.  Sinoc the maximum

contribution of (|, comes from the vicinity of L:h) and siace 6 is strongly
(8

oh oh
peaked at L=EO, a positive value of the integral (weaning :nstability) will be

2 i ?
172 falls within the positive domain of )]*l - J;—l

In other words, the regions of unstable K, will alternate vith those of stable

obtained whenever kl(l—Ep/EO)

K;. The largest positive value of the integral will, of churse, be obtained

)
when K, (1-L /L )1/2 is cqual to the value at which the first maximum of J7
P o P+l

Jp 1 occurs. However, for the same valuces of mpc/u and Kl, which ensure the
positivencess of the n=p term, there will be some or all n#p for which the value
)

H
of KL(I-hn/EO) may be such that J;+] - J;_l is negative.  These terms in the sum

may cancel the positive contribution from the n=p term and thus eliminate the

in such a w; hat ¢ - but . ~F
y N uch a way that plo‘ ut lnl0 for

all n#p, then the negative contribution from the n#p terms will be comparatively

instability. However, if we choose K

small and the dominant contribution to y will arise from the n=p term in the

som. - This sets an opper Timt to k. The optimal vafue of i\“ is determined by

the width of Uoh(h). Finally, we obscryve that the upper hwvbrid mode has the

largest growth ratce in comparison with the Bernstein (ceyclotron harmonicl modes.
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. . 1-n .
This is so because o /Jw is large near the cyclotron harmonics (-b , n=2,3,4,

..). Hence, we shall concentrate on the upper hybrid instability. In this case,

2 2 172 (22°)

WS Wy = @ é+mpe/u ) R 2

and
4 .1/2
2 ,n .. w__« L oo ©
_m oh} “pe 0 1 dE . 2.2 32°
Y-“z‘(n)"(sz) > [ ST ® G - ) . 62D
o IK”| = : E

-

2 -2
where the arguments of Ji+ and J;-l are the same as that of Jn in Eq. (31).

In order to obtain values of y we now consider the parameters of our

1

interest. In the lower ionosphere (100-170 km), n, = (0.6-3.0) x 105 cm-s,

B
o]

1

0.35G; then, w e/Q = 2.24 5.0. Numerical values of v have been obtained
using the clectron energy distributions of Jaspersel. The collision frequencies,
Vi have been calculauted using the recent cross section data. and the model
atmosphere of Jacchiall. lilectron temperatures were taken from Jasperse! calcu-
lations. The collisional damping rates are given by Lq. (25). Results of these
calculations arve summarized in Table 1. The maximum value of the growth rate,
Yin? corrcsponds to the maximum valuce of the sum appearing in Eq. (327). We
notice that T increases with altitude. This is mainly due to the fact that

both upo/u and noh/nO increase with altitude lsee Eq. (327)). The integral in
Eq. (327) decreases with altitude due to broadening of the distribution function,
but the decrement is very small over the altitude regions of our interest. We
have verified it turther by cvaluating the integrals with Goh = 6(E-E0)/4n and
then comparing these with the actual numerical values. The collision frequency
and, hence, the danping rate W, decreases with altitude. This is due to

tion of neutral species. At higher altitudes, however, electron-clectron and
clectron-ion collisions, not considered 1n this work, become increasingly
important .

We further notice that the vialue of kyvg/ie for which the growth rate is
maximum increases with altitude. So, b ki_Te/mnz = (kivé/nz)Te/ZEo) increascs
with aititude and becomes finite. Conscquently, the growth rates in Table I,
which arc obtained tor b-<1, have to be modified. From the dispersion rclation
(19) we tind that the finite-b-modificd upper hybrid mode has a frequency
targer than its previous value,  For example, when w)o/n = 4.3 (140 km) b~1.0
-4.14: (sec Ref. 10 for

and then the frequency is w, '5.40 whereas, for beel, w

i H
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the solutions ot the dispersion relation when b is finite}.  This means that
instead of n=4, n=5 term will contribute most to the integral in Eq. (327).
The growth rate will be smaller than the one reported in Tuble 1, but the
reduction is small. At high altitudes clectron-clectron collisions, not con-

sidered in this work, will be more cffective in eliminating the instability.

Finally, at altitudes below 125 km the collisional damping rate cxceeds
the maximum growth rate of the upper hybrid mode, and so the instability cannot
be excited. As we show in the next section, below 125 km a different type of
instability, namecly, the clectrostatic electron cyclotron instability, can be

excited.

4.3.2 Electron Cyclotron Instability

In the previous section we considered unstable waves with small but
finite k". Here we show that under certain conditions waves propagating
strictly across the magnetic field (k“=0) can also be driven unstable by the
suprathermal electrons. This instability, which is of non: resonant tvpe, is
excited at the electron cyclotron harmonics. In order to valculate Nh and Dh
for this case, we change over to the spherical coordinates in the velocity

space and after some straightforward algebra (sec Appendixy obtain

o o J, 2k v/
_ 4me _ . 2ntTL
N, = oS fo dv F_ (V) |1 - (wrivy z v (33)
n=-~ow !
+o v o —
_ 4nQ h - ) L
R N ol AL 2 D G0
- oh e h 0 Do

In deriving Eqs. (33) and (34) we have put k -0. The complete dispersion
relation is then

© .22
2n wpe(w+1vm) dn Ave (Eﬂ
el wlriv)? - nafl K (P

where Nh and Dh

Eq. (16)], and we have denoted k by k; . Let us first analvze the dispersion

are given by Eqs. (33) and (34), a, - (l“/h) exp{-b) |see

relation in the limit vm=0. We write w=nu(l+x), where n-l and xo -1 (since

noh/no~-l). Then, Eq. (35) becomes

»
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da w da.xn"w w 2
- ; PVZ * 1 ZP? ” —B%' ah Oggz =0 (36)

(n"-1) (n"-1) 12 p) ELVO

Here ¢ - noh/n0 and the quantity I is defined as
2 fo.e]
= : 2

I1(n) 4nvoJ; dv Foh(v) Jzn(.k_Lv/Q) , n>2 (37)

L 3 2, . . N
where Poh : roh/noh’ and va/Z = Eo is the peak cnergy of the suprathermal

clectrons. We have neglected terms of the order of (vh/nQ)o or smaller

comparcd to the others. Once of the roots of the algebraic equation (36) is

-
n -1 n -1)u”
X 7 - l~—(~———%
4n 2a w’ i
I pe
] 2 2 2 Yz
2 o4 200w 2 2
n7-1) w7 I - 1—Pe + (n"-1) a_ o+ aler (38)
2 4 4 2 2 A 2 n k2 2
64dln mpc (n"-1)0 aln ‘yo

¥e notice from La. (38) that x can have a positive imaginary part (meaning

instability) when i<0,

) 2
a kIv’
[l ._IL:::.O (39
a2’
and,
y t 9 > e
20w ana, w- fofr]|a”
) —Lpe PR N\ — - a (a0)
2 20,02 22 n '
(n"-1)a (n"-1)u k;Yo

2 U .
The condition (40) determines the range ot the values of m“c/a in which the
n-th cvelotron harmonic can be unstable.  The largest value of Tmy  is obtained

when

1“ . n —_l ) (1)
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Then, x becomes

5 22
2 a kv~
. (nT-n | o naLo
x =1 gV | (1Y - —— (12)
10

1 af

The second term within the parenthesis in Ly. (42) represents the finite-b
stabilizing effect. In the prescnce of collisions, the solution of the complete

dispersion relation (35) is
2
(n +l)vm
w=n +#i ]|y - —| > n>2 (43)

where y = nQ(Imx) and the additional term is the collisional damping rate.

The maximum value of the collisionless growth rate, denoted by A is

1/2

2
2 ak
_(n-1)u ) o . _n m) .
Ym = ""_—-km —4211 maxll[ 5 (44)

Here km is the value of KLVO/Q for which the maximum valuc of |I| is obtained.
Finally, the condition for exciting the electron cyclotron instability in the

presence of electron-neutral collisions is

2
(n +1)um

v - . (45)
m an”

Although accurate determination of I requires numerical integration, it
is possible to obtain an analytic expression for 1 using a suitable Foh that
closely represents the actual distribution function. Such an analysis is
instructive, if not so accurate. We first change over to the encrgy representa-

tion so that CLq. (37) becomes

b

1/2
o 2k v v
_ . dE . a0 L
1= 4vL0 ) < Goh(E) JZn[ 7 (E;ﬂ . (46)

We then choose

a]*“ L
Goh(t) = Z;E:FTT:ET-(E:J exp(—aL/Eo) , (47)




which satisfies the required normalisation condition: 4n1‘ Goh(E) = 1.

It can be easily verified that such a distribution is peakgd at E:EO, and )
the quantity a is a measure of the width of the distribution, ec.g., a=4(E0/A)".
where A is the characteristic half-width of the distribution. Our model
distribution closely resembles the ones that are found in the low altitude
regions by thcoretical calculation.?! Substituting this Goh(E) into Eq. (46)

we findlt?

(RLVO/U);HF(n+a)

K2v"/a0%) M(n+l-u;2ns1:kov2 7ag’ (48)
I o exp (- FUNA )} M(n+l-o;2n ikpv /o )

«a -lF(l‘*u)r(z]Hl)

where M is the confluent hypergcometric function. From the properties of

the function M we find that I will be negative when (n+la) < 0, provided

2. 2 2 " .. .
(KL/vo/uw ) - 1. [This condition tells us that for the n-th cyclotron harmonic
tv be unstable the width of the electron distribution has to be such that

(A/lho) : (n+l)_l/“, i.c., for large n, the distribution function has to be

————
PRMETEI e

very narrow; otherwise, the mode will be stable. We have shown earlier [Eq.

(41)] that the value of unstable n is determined by the value of wpe/Q. Since
mpe/ﬂ increases with altitude, requiring larger n values for the instability
to set in, and since the widths of the calculated distribution functions also
increase with altitude (sce Fig. 1), we can conclude that the cyclotron
instability will I operative only in the low altitude regions. The approxi-
mate width of the unstable spectrum is given by

2
2 kv

. = 2
W o(n o+ %) Jiaa-2) - 22 o W? (s %9 / (8a-2) (49)

asd”

since M is negati o within this region. There are, of course, other regions

of negative M corvesponding to lhigher values of kLy‘/w, but for thosc values 1
[}

will be smaller icomapgnitude.  We can obtuin the approximate value of 1 by
taking the «- -1 I'mit, in which case Goh - 6(E—ho)/4n. and lig. (48) reduces to
_ Koy /0
bod,, QR 7 (50)

Numerical calculations using the theoretical distributions of Jasperse! indicate
that Fq. (50) is an excellent estimate for 1 in the low altitude regions of
our interest. For illustration purpose, let us consider the n=d mode. I we

take BU ~ 0,350, the vajue of mpc/w given by liq. (41} |with lulT]) then




corresponds to the electron density at an altitude 130 hn.  From Lg. (50),

maxlII = max(-J8)=O.23, corresponding to klyo/Q = 7.1. Numerical evaluation
of Eq. (46) for n=4, using actual Goh(ﬁ), viclds max|1|=0.18, which is obtained
for kLyO/Q = 7.1. The agreement is even better at lower ultitudes where Goh(E)

is narrower.

In so far as the stabilizing term in Lqg. (44) duc to finite-b effect can
be neglected, the collisionless growth rate of the clectrin cyclotron instu-
bility is large compared to that of the upper hybrid instibility. In the

1 . . .
/2 while in the latter case it

former case, growth ratc is proportional to o
is proportional to o, where o = noh/no«<]. In Table 2 we present maximum
collisionless growth rate (without the finite-b effect), and collisional
damping rate as functions of altitude. The altitude is dotermined from the
value of wpc/ﬂ, which in turn is determinol by the cyclotron harmonic n

according to Eq. (41).

As the altitude increases, the ftinite-b stubilizing ffect becomes
increasingly important. This is duc to the fact the clectron temperature as
well as km increase with altitude. For n=4 mode, if we tike into account the

N I

finite-b effect the reduced growth rate Y, is found to bc melu's_l. Above

this altitude, the stabilizing term dominates and so the modes arce stable.

4.4 SUMMARY AND DISCUSSION

We have studied the clectrostatic instabilitices associated with the I
region (hbelow 170 km) photoelectron distribution functions in the presence
of electron-neutral! collisions. We find that at low altitude (at or below
130 km) waves at electron cyclotron harmonics can become unstable with growth
rates larger than the collisional damping rates. As altitude increasces, this

) i
clectron cyclotron instability is extinguished by finite-b (,klrc/mu“) cffect,

At altitudes 130 km and above, on the other hand, upper hybrid instability
can be excited cffectively. Our calculations based on the recent theoretical
electron cnergy profiles of Jaspersc! show that the upper hybrid instability
can operate at altitudes as low as 120 km. This is an improvement over the
calculation of Bloomberg*, who found that the upper hybrid mode is stabilized
by collisions at or below 160 km. This disagreement with Bloomberg's calcu-
lation is primarily duc to the fact that he considered the collision fre-
gquencies of the b eV clectrons.  Bot, as we have shown in the text, the damping
is mainly duce to the Maxwellian clectrons with temperature 0,01 ¢V oat 1.0 k.,

Conscequently . the relevimt collision fro nency is an order of magnitade

J9
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smaller than that of Bloomberg. Also, our calculated collisioniess growth

rates arce somewhat larger than those due to Bloomberg. This can be attributed
!

to our usc of the clectron energy distribution of Jasperse', which we believe
is wore accurate. At high altitudes (above 170 km) clectron-clectron colli-
sions, not taken into account in this work, are expected to climinate the

upper hybrid instability.

Both of these instabilitics are driven by the suprathermal electrons with
cnergy peaked at 4 ¢V, Turbulence arising from these instabilities is
expected to produce the observed? 3 anomalous structure in the clectron
distribution function in the 2-4 eV enerpgy range. This will be the topic of

our future work.
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5 APPROXIMATE ANALYTIC SOLUTIONS FOR 'THE AURORAL PROTON AND
HYDROGEN FLUXL'S AND RELATLED QUANTITIES

5.1 INTRODUCTION

The proton aurora results from the precipitation of energetic (-1 to 100 keV)
protons, with the peak of the energy spectrum lying below 10 keV, into the
auroral atmosphere. Spectroscopically, it is identitied by the readily detect-

able Balmer series emissions (Ha, 1 and Hy). The Balmer cemissijions arc

,
radiated by the moving hydrogen utogs that are produced in the charge-cexchange
collisions of the protons with the atmospheric constituents. The proton pre-

cipitation also results in the excitation of various nitrogen and oxygen omis-
sions, such as A3914, 14709 N+ and 25577 O1.

9

Theoretical calculations of enecrgy deposition {function, ionization rate,
and 23914 N;/“B intensity ratio were initiated Dy Chamberlain [1961]. Since :
then, Eather and his co-workers have improved upon Chamberlain's calculations E‘
utilizing recent experimental and theorctical cross sections for all the cnergy ik

loss processes involved. A complete list of thesc works can be found in the |

monograph by Vallance Jones [1974]. ‘These calculations, however, are semi- 'j
empirical in nature, without the detailed knowledge of the energy distribution |
and the pitch angle distribution of the precipitating protons as a function
of altitude. As Eather [1967] has pointed out hoth the energy spectrum and
the pitch angle distribution must be known for correct theoretical interpreta-

tion of the measured hydrogen line profiles.

In this paper, we calculate for the first time the enerpy and pitch angle
distribution of the auroral protons as a function of altitude, applyving the ;
methods of linear transport thecory. The proton precipitation problem is com- yi
plicated by the partial neutralization of the incident protons as a result of
the charge-exchange collisions. This lcads to a coupled sct of transport
equations - one for the proton flux, and the other for the ncutral hydrogen
atom flux. Another related complication is that the hydrogen atom resulting ?
from the charge-cxchange collision can travel large distances across the ecarth's
magnetic field lines before being converted buack to a proton via charge-stripping *
reaction. Davidson [1965] used a Monte Carlo technique to analvze this trans-

verse diffusion and found that, for 5 to 20 keV protons, for cxample, an

isotropic incident pitch angle distribution results in a spreading of the




precipitation zone over an area as wide as 000 km. Consequently, the relevant ;
transport problem is, strictly speaking, a two-dimensional one. In the present

work, we ignore this transverse diffusion and obtain approximate analytic

solution: for the 'roton and the hydrogen fluxes in a plane-parallel geometry.

We also rresent analytic expressions for energy deposition rate, and itonization

rate as . function of altitude. In Sec. , we calculate these yuantities as

well as  he densit ' of electrons, which result from ionization and the strip-

ping of il atoms, forr an isotropic-Maxwellian incident proton flux, using the

pscudopiarticle method of Jasperse and Strickland [1979].

5.2 CHARACTLRISTI © FEATURES OF PRECIPITATING PROTONS

Fast protons -ntering the upper atmosphere undergo charge-exchange

collisions in whicy the incident proton captures an clectron and becomes a
fast hydrogen atom. The H atom then undergoes stripping producing a proton and

an electron, thus completing the charge-changing cycle. These processes arc:

TR R LA (1)

e > H e Ml (2)

where M denotes any atmospheric constituent. The cross sections for thesc

16 2
em). As a conscquence, an initially pure

processcs arc quite large (2107
H' flux :oon becones a mixture of U and I, and after only a few charge-
changing cveles ar equilibrium flux is established in which the fractional
composition is a function of cnergy. For auroral energics, this equilibriation
occurs well above the altitude where significant energy losses due to ioniza-

tion and excitaticn of the atmospheric constituents can occur.
In addition to processes (1) and (2), charge-changing processes such as

+4

W oe Mo oM (3)

+

HWov Mo 1« Mo+ 200 (4)
can occur.  However, the cross scctions for these processes are very small and
the 17 content of the cquilibrium flux is <1% in the auroral energy range.

Because ionization and excitation processes involving 11 have cross sections




+ . . - .
comparable to those of H and H processes, it is a good approximation to

neglect H™ in the proton auroral analysis.

5.3 BASIC EQUATIONS

For a single constituent atmosphere, the lincar transport cquations for

energetic protons and hydrogen atoms in a plane-parallel grometry are

3 i,.. ex,,. cL . 10, . .
[ 37 ¢ n(z){op(b) + op (E) + op (E) + o (h)}:]ép(z,l.u)

= 2nn(2) £ JaBE“dL T oF (07 > Bou) 6 (2,70 0)
j k Pl D

+ 2mn(z) T JdE“dp” U?I(E’,u’ > E,u) ¢”(z,t‘,u’) (5

J

[u 5%—+ n(Z){Oﬁ(E) + OEX(E) + oﬁl(ﬁ) + 001(5)}:]¢“(2,d,u)

~
= 2mn(z) ¢ |dE“du- x Gﬁj(h’,p' > B,u) o (2,E7,0°)
i k
P
+ 2on(2) 1 B o070 > ) RN (6)
j o

where ¢'s are the particle fluxes, z is the altitude, ¢ is cosinc of the angle
between the particle velocity and the positive z-axis, whi h is parallel to
the geomagnetic field lines, and n(-) is the ncutral density. Here,

cg(E‘,u’ + E,u) is the differential cross section per unit range (referred to
hereafter as just the differential cross section) for collision between the
precipitating particles and the neutral particles in which the ncutral particle
makes a transition from the ground state to the final state j.  The summation
index k labels elastic (e?), excitation {ex), and ionization (i)-type collis-
sions. The corresponding total cross sections, denoted by ok(E), is related

to the differential cross sections by the formula

o) = 20 1 LdE“du” 0§(E‘,u‘ + L,u) (M)
j o
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The subscripts P and Il represent cross sections associated with the protons

and the hydrogen atoms respectively. 1In addition, 0;0 is the differential
cross section tor the charge-exchange process (1) in which the ionized neutral
particle is left in the state j, and oql is the equivalent differcntial cross
section for the stripping process (2). The corresponding total cross sections,
ulo(h) and aOI(E), are rclated to the differential cross sections by the formulae
similar to Eq. (7).

In writing Eqs. (5) and (6) we have ignored any clectric field that may
be present in the auroral atmosphere and assumed that the geomagnetic field is
uniform. Under thesc assumptions, protons losc energy only via collisions and

such collisions result in discrete energy losses. ‘

5.4 FORWARD-SCATTLRING AND AVERAGE DISCRETE ENERGY-LOSS APPROXIMATIONS

The differential cross sections for all the processes involving protons

PR

and H atoms are very strongly peaked in the forward direction for incident
encrgics above a few hundred eV [McNeal and Birely, 1973]. This suggests that

except toward the end of the precipitation one can make the forward scattering

i ol a2

approximation. We shall use this simplifying approximation with the under-

B

standing that our analysis will be only valid for F.>Emin
The loss function L(E), the energy loss per unit path length per molecule, ]
for a narticular inclastic process (excitation, ionization, charge-exchange

or stripping) may simply be defined as the product of the average energy loss

W and the total cross section associated with the process. FEdgar et al [1973]

have given the loss function for cach inclastic process as a function for each g

oy

inclastic process as a function of proton energy. Using the cross sections

given bv McNeal and Birely [1973), and assuming equal average energy loss for

both protons and Il atoms, we have calculated W as a function of E from the loss

functions of GEdgar ct al [1973] and find that it is a weak function of cnergy

in the auroral cnergy range and that it is almost the same for all the inelastic

rocesses.  In the average discrete encrgy-loss approximation, W is taken to
P § gy pp

be a constant (= 28 ¢V) and the same for all the inelastic processes.
vith these approximations, we write

SR ) = e ot ) s(ET-E) Sit-n) (8)




£ oW, u > B = (20) 71 0 oSR(ES) STE- ()] & (n - (9)
- ) i)
j j
X 0%([3',].1' - E,p) = (2")_1 ) ()i.(l‘:’) SIE - (W) | & (n”-u) (10}
i i

10,.. . . - Y .
b} 01. (E7,u"»E,n) = (2n) ! by 0].( () SPE=(BE+W) | S(p -u) (11)
i i
L ?I(E’,u’ > Ep) = 2m7 s u?l(n') SLE-(L+W)] 801 =) (12)
j J

for both protons and H atoms. Hcre, % u?x(u’) is the total excitation cross
]
section oex(E’), and so on. Substituting Eqs. (8) through (12) into Lgs. (5)

and (6) we obtain

[u 3%-+ n(z) op(Ei] ®p(z,E,u)
= n(z) [oex(E+W) + oj(E+W)] & (z,5+W,u)
p p P

v n(z) ol (EW) o (z,EW,0) (13)
and,
[u S+ n() oH(E)] b, (2,1, 1)
= n(z) [OEX(E+W) + oﬁ(E+W)] ¢“(z,ﬁ+w,u)
10, .
+ n(z) o " (E+W) ¢p(z,E+W,u) (14)

Here we have defined

10

o, () G;X(E) s o;(ﬁ) + o10E) (15)

and,

oy (E) = nﬁx(E) + uh(n) + o01(m) (16)
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We notice that the clastic scattering terms drop out as a reeult of the
forward-scattering assumption, and the coupling between the proton ind H

. . 10
atom fluxes uarise duc to the charge-changing processes represented by o = and
01
J .

5.5 SOLUTIONS FOR THL FLUXES

Since the equilibriation of the incident proton flux occurs in the altitude
recgion where energy loss is unimportant due to very low atmospheric density,
we can analyze the precipitation problem in two stages. First, we neglect all
cnergy losses and show that cquilibration duc to charge-changing processes is
a direct conscquence of ligs. (13) and (14). We calculate the fractional com-
positions of protuns and H atoms in the equilibrium mixture. Then, we solve
the full transport cquations for the fluxes taking the equilibrium fluxes as

the given boundary values.

5.5.1 Pguilibriating Fluxes

If we neglect all cnergy losses, [Lgs. (13) and (14) reduce to

[u o+ n(z) .x“’(m] 1y (z,1,0) = n(2) o0 () 8, (2,1,0) (17)

[“ T s n(z) m(“(li)J b, (2.1,0) = n(z) 10 05 (2,1,m) (18)
Adding the two cquations we obtain

b NN N CR A (19)
which iuplics

mp(:,ﬁ,p) + h”(:,ﬁ,n) = ¢0(E,uj (20)

where ¢”(h.u) (for -1-u-0) is the proton flux incident (at z=«) on the atmo-
sphere. Lquation (20} is just a statement of the conservation of flux.
tnserting Lg. (20) into cither (179 or (18), and defining an equilibriation
depth r.oas

) 0
di o= o- (/vl( + oo l) nl{z) dz (1)
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[¢] 3

¢P(Te(Z,E),U,u) = ¢4 (E,u) o ot (!t 1o el /) (22)
a + O 3]
o10
d’H(Te(Z)E):E:u) = ¢O(Eau) -m (1 - CXP(T(‘/U)) (:3)
g + J
for -1<u<0, and zero otherwise, since ¢ n) =0 for O<p<l, i.e., no particles

are incident from below. According to Fgs. (22) and (23), the fluxes approach

their respective equilibrium values, given by

01
eq e Y B _1-
QP (E)u) = 10 01 q’o(r‘)u)’ fOI‘ 1_u<0 > (21)
J + 0
and,
€eq 010
‘DH (E,u) = ——ITJ—T)T ¢O(E,|J), for —lfu«’O s (2.))
g + 0
asymptotically.

For an isotropic incident proton flux, the hemispherically averaged values

of the equilibriating fluxcs are
R fO
- ) 3
¢p(Te(Z,E),E) W ) du @P(Te(z,b),ﬁ,u)/zﬂ

. 10
= @Eq(ﬁ) [1 + :01 uz(Te(z,u))] (26)

and,

0
@H(Te(z,E),E) ZTIJ.I du ¢ll(1e(z,E),E,u)/2n

= opl®) 1+ 7,(r (2,E0)] @)

Here,

oS4 (E) - fod 2S9(E, 1) (28)
P B P LI
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0
o ) f du opt,w (29)
-1

and, L,(x) is the sccond exponential integral function. In the upper atmo-

sphere, the most effective charge-changing process are

10

H + 0> H+ 0" (')

01

H+0>H +0+¢ (o))

due to large abundance of oxygen atoms. We have calculated values of ¢p and ¢”

as a function of altitude for an isotropic-Maxwellian incident proton flux,

i.e.,

@O(E,u) = (—4'—- E exp(~E/E0) , for -1-p<0 , (30)

2ni,
0

where OS is the total energy flux in the downward direction and Eo is the mean

proton cnergy, using alO(E) and 001(E) of McNeal and Birely {1973} and using

a wmodel atmospherc [Jacchia, 1977; 1000°K}. We find that for EO = 8 keV, for i
example, the fluxes attain their equilibrium values at approximately 290 km, k
i.c., 2 = 290 km.

cy

In the following precipitation analysis, we shall take 222pq as the
bounduary, and solv. Eqs. (13) and (14) with Q;q and ¢ﬁq, given by Eqs. (24)
and (25) respectively, as the fluxes incident on the boundary.

5.5.2 Precipitating Fluxes

Transforming gs. (13) and (14) into cquations in terms of the 'optical!

depth o, where

:O([
¢ o1 (zLE) p) f n(z”) dz~ , (31)




we obtain
5 GP(E+W)
615;-- 9 ‘PP(T(Z.E),h,u) = - —;;TET—-¢P(1(z,hfW),h+W,u)

- —;—%%{ﬂl 8,y (c (2, BW) B+ ,0) (32)
and,
5 (;H(E+W)
(]J a—T - 1) ‘D“(T(Z’E) ’E’U) = - Op(r) ‘DH(T(Z;‘:‘*'W):I""W’U)
. __Elgiﬂl o _(1(z,E+W) E+W, 1) (33)
UP(b) p LR 9 s H . Ry
Here, we have introduced BP = o?x + o; s 8“ : oﬁx + OH for brevity of notations,

and assumed cp(E) = o“(E), which is a fairly good approximation over the

auroral energy range.

The formal solutions of Eqs. (32) and (33) arc

¢p(r,E,u) = ¢§q(E.u) exp(t/u)

(E+W)
9p oL (B) f de ¢ (b\\t’E =W,u) cxp[(r-t}/u]

E .
- __._0 EE;W) i Lo, (b, t,L+W,u) exp[(1-t)/u] (34)

and

0, (T, Eu) = 03 (E,u) exp(t/n)
0 (E+W)
» - __(__f de 8L 4 (bt LoW,u) exp[(1-)/u]

(L) R ,
- p(b t.E¥) exp [(1-1)/u] (35)
P(F) ":)
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for -1l<u<0. Here b“(E) 9 E+W)/op(ﬁ). Adding CEqs. (34) and (35) we obtain !

Fo(U,0,0) + 0 (1, Fu) = 0 (,u) exp(t/u)

X
. dt .
- l)“(l.) L T [¢p(b“t,l'.+w,u) + ¢H(h“t,l,+\s,u)] |

x exp [{1-t)/u] (36)

under the assumption 0p=0- In obtaining Eq. (36) we have used Eqs. (24) and
(25). This equation for the combined flux can be solved by iteration procedure,
which is cquivalent to the multiple-scattering method used by Jasperse and

Strickland [1979] in solving the auroral clectron precipitation problem, and

the complete solution is

0

¢P(T,E,U] + ¢”(r,h,u) = ¢O(E,u) exp(1/u) + :E; bn](h)
n=
x ‘DO(F.H)W,u) [Hn(T/u,E) - Hn(O,E) exp(r/u)] s (37)

for -1<1:-0, and zcro otherwise. In the above equation,
Hl(X,li) = a“(l:) oxp(l)‘\x) , (38)

and the higher ordrr H functions can be obtained from the recursion relation

expl=x) N (GE) - H o (0,1) = ;
X
- j: da’oexpl(-x7) Illn(h“x JieW) - Hn((),lzﬂ.') cxp(h“x’)l (39)
)
so that

H“,(x,li) - “..’.'”Jl (%\p(hllx) - i'l.l“ll cxp(b“x) s (40)

|I;(X.|i) = ..

i, expibho x) - a.a..a exp(b x
an 32751 Pl 31 ) 3532 Pl 1} )

11
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etc. In the above formulac we huve introduced the following definit ons

bmn = bmn(E)

1

oP(E+mW)/op(E+(n-1)W) R (1)

a =a (E) =a (B):[1-b ()] . NEY

mn mn mi mn

That Eq. (37) solves (30) exactly can be verified by direct substitution and

using the recursion rclation (39).

Substituting ¢  from Eq. (37) into liq. (31) and doing inteprations, we

1l
obtain

0 (1,E,1) = opd(E, 1) exp(i/u)

~—-—°(”(E"w)i Feni, )b o (L[ -1 (0, B eap(d
* op, (E+W) n=1¢0( W, )b GO [H G/ -1 (0, Elexp(e/u)] !
b
OP(E+W)~HO](E+W) 1 dt
oP(li+W) btl(h) ,':) W Y!,P“)l\t AW, )
x exp|(t-t)/ul (11)
In doing the integrations we have used the recursion relation (39) and the
definitions (42) and (43).
We now solve Lq. (44) by iteration, where the veroth order iterate is H
oD (1,500 = o) exp(r/) + T Dy
p Tolsb) = Sp L) eXpLT/ o, (EeW) &=t Tt
x hnl(ﬁ) [Hn(r/u,E) - Hn(O,E) expt/p)) (15)

After successive iteration, the resulting solution can be cxpressed in a closed

form as:




. ) o) . z RSP .
,[,l\_l,_.;) t Ce, b u) o+ (R)n [bp (F+nW,u) hn]([.)

P nol

.’l! ) -11 (0 I8 N / ! . ﬂ()] (L"'(ﬂ"’l)W) i ¢ (F+mW )
\An(l/“' i n k) expa U)} a—m) m=n+1 o'’ ds

* by ] (/1) -1 (0,E) eXP(T/u)}] , (46)

1s given by Eq. (15), and

!\P(L+h)-nUI(E+W)1 [;£}5+2W)-001(u+2W)] GP(E+nW)-o°1(E+nQ;l
O N G l~. ENCEED _J """ S '
(47)
so that
01
b (LW -0 (E4W)
(RYy = r___

1 g (W) T
p

0)(E+k)-nOl(E+W;1 GRFE+2W)—001(E+2W)
R (EY)) ! o (T 2m) » et
! _J p

(R), -

Eaquations (37), (47) and (47) constitute the complete solution for the preci-
pitating proton anc hydrogen fluxes subject to the approximations that were made

in the course of the analysis,

A few comment: about the solutions are in order. The lincar dependence
of the fluxes at a'l altitudes on the incident flux is cvident. The solutions
yicld no hackscattered flux, i.c., ¢=0 for O<p<l. The reason for this is that
in the forward-scattering approximation clastic scattering terms drop out and
no particles arce scattered into the backward direction. Each factor in (R]n is
a very small quantity (<0.06) over the auroral energy range, so that the sum
in Ly. (46) converyes estremely rapidly.  For practical calculations, only the

n=l term in the sun should be yuite sufficient,
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5.6 HEMISPHERICALLY AVERAGLED FLUXES, ENERGY DEPOSITION RATE
AND IONIZATICN RATE

In this section we give analytic expressions for various measurable

quantities for an isotropic-Maxwellian incident proton flux as given in Lg. (30)

5.6.1 Hewisphericully Averaged Fluxes

. 0
0})(‘.,5) f du ¢p('r,l=,u)

Q 01 ..
( S:s i (L)m Lexp(-1./Eg) 1, (1)
Y B | RIS )

0] -
W)

6;(LOWf' tl+nk) cxp(-(Lonh)/LU) b

nl
n-1

~{kl](1,1;) SRUNY l._,h)}

Q. @ oL
{ > :E: M |10 ‘L'"ﬁf - Lenk)
\_’11[;‘() "o Eenw) o+ o (EenW)

n=1

+

X

exp (- (E+nW) /E ) bnl{Kn(r,E) -1 (0,8) 13(()}

01 . e
v (E+(n+1)W) : AP o (Famb : : o .
+ NI z (C+mW)exp( (l,ﬂnw)/l“?bm]{l\m(1,l,] llm((),l.)l‘:l.)}] )
P m=n+}
(18}
and, according to Lq. (37),
- QS e .
¢H(T,E) = ; 3 E exp(—h/ho) EZ(T)
nE
0
+ :E:(E+nW) cxp(—(E+nW)/E0) hnl{Kn(T,E)-Hn(O,E) E?(l)ﬂ
n=1 -
- ép(r,E) : (49)

where Ez(x) is the second exponential integral function dJdefined by
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EL(X) - J' dt t_: exp(-xt) , (50)
- )

and,

0
Kn(,\‘,li) , [ldu lln(x/u,['i) (51)

It can be easily verified that the K-functions are the same as the lH-functions

with the cxponential functions replaced by the E, -functions everywhere.

5.6.2 Lncergy Deposition Rate

The energy denosition rate nr(z), defined as the energy Jdeposited per unit
volume per unit time by the precipitating fluxes, is piven in plune-parallel

geometry by
o 0 3
- 9. - H : Ty N z A >
n“(‘) 2un(z) J; dL: 12 dpu p B OP(E)DT [@p(r,L,u) + ¢”(T,F,u)] , (52)

recognizing that Je(z)/nz n(:)np(ﬁ)aqu)/aT, With the aid of LEq. (37) this

becomes

Q o

‘S i . . . S .
n“(?) = (y_3) n(z) f dii T op(l:) [l: cxp(—l;/bo) l:z(r)

0 min

+ :E: (L+ni) cxp(—(h+nW)/H0) bnl{Ln(T,E)~Hn(0,F) Ez(T)}] y (53)
n=1
where

()
. . ‘) . H
1.“(.\,|A) jl du — Iln(\/u,l.) (54)

The ruvle for Ln(X,h) is: tind \Hn(X,E)/Ux and then replace the exponential
functicns by the &, -tunctions cverywhere. As discussed in the beginning of

section L4, our anolytic solutions for the fluxes, based on the forward-

scattering aprproximation, are enly valid for “)bmin' In doing the cnergy integral

in Lqg. (53) trom Lwin te o, instead of from 0 to = which defines e we lose

contribution to the integral amoeunting o fow percent for the auroral protons.

14




—

5.6.3 lonization Rate

An important quantity describing the proton-hydrogen cnergy deposition in
the auroral atmousphere 1s the ionization rate ni(z), detfined as the number of
electron-ion puairs created per unit volume per unit time. In proton aurcras,
in addition to thec impact ionizations by fast protens and hydrogen atoms, an

electron-ion pair is created at the end of cuach charpe-chanping cvele.

In planc-parallel geometry, ni(z) can be calculated from

n; (2) = 2m n(z) f W (C)f dy p E ° (l) - I~l> S E e, ()],
Emin

(55)
where WS(E) is the average energy cxpended in creating an clectron-ion pair due
to impact ionizations and charge-changing processes. lInserting Eq. (37) into

(55) we obtain

0S Jr
ni(z) = Eg n(z) 4 W (L) L op(E) [E cxp(—E/EO) hZ(T)
Iy
+ :E:(E+nW)exp(—(E+nW)/Eo) bnl{Ln(T,E)-Hn(O,E)E7(1)}] . (50)
n=1 -

The underlying assumption in writirg Eg. (55) is that the cnergy deposited by
the precipitating proton-hydrogen fluxes is entirely cxpended in producing
electron-ion pairs. This is a reasonatle assumption for E'Emin -1 keV, since
the energy loss due to excitaticn processes is comparatively small owing to

small cross sections.

We take for WS(E) the values calculated by Edgar et al [1973]. ‘Typical
values are 30, 27, 26, 27, 28 and 32 in eV for 1, 2, 5, 10, 20 and 50 keV proton
energies, respectively. Because of chargc-exchange a great number of ions are

created at low energies leading to a dip in WS(E) belew 10 keV prctorn cnergy.

We further point out that in evaluating the encrgy integrals in tgs. (53)

and (56), the integrals may be truncated at some Emax' When this is done the

infinite sums terminatce at a maximum value N given hy N = (Emax- mln)/W

A5




5.7  PSEULGPARTICLL MITTLOD

In the formulee of sectiens 5.6.1 through 5.6.3, W is -30 eV aund the
incident auroral protonr cnergies range from I to 60 keV. This means, the sums
in the forrulae cxtend to as many as 2,000 terms representing as many as 2,000
scatterings before an energetic proton loses all its encrgy. However, a gocd
approximation to these large sums may be obtained by introducing the notion of
pseudoparticles [Juasperse and Strickland, 1979]. A pseudoparticle is a particle
which has a cross section W/& times smaller than the rcal particle but has an
average encrgy loss per inclastic collision @/W times greater, where w->W. In
describing the energy precipitation in terms of the psevdoparticles, we simply

replace o by o and W by W everywhere in Eqs. (48) through (56), i.e.
o) > o(E)  (W/W) o(l) (57)

W oW (k/%) W (58)

e notice that under such transformations the energy loss function L(E) Wo (E)
remgins unchanged; but, the number of terms in the sums is reduced by the facter

W/W, i.c. NON(W/W)

Using the pscudoparticle methed we have calculated the various cuantities
in sections 5.6.1 through 5.6.3. We have found that a converging answer can
be chteined with a suprisingly small number of pscudoscatterings. For example,
for an irotrepic-Maxwellian incident proton flux with EO = 8 keV only 10 pseudo-
scatterings (1.e. 1!=10) spanning the energy range from Emin = 2.5 keV to

i = 57.5 keV yield good answers.

‘max

REFERENCLS

Chamberlain, J. W., Physics of the Aurcra and Airglow, Acadenic Press, New
Yerk, 1961.

bavidson, G. T., Expeeted spatial distribution of low-encergy protons precipi-

tated in the auroral zones, J. Geephys. Res., 70, 1061, 1965,

Eather, R H., Auroral proton precipitation and hydrogen emissicns, Rev.
(;('nphl'x. S5, 207, 1967,
fdgar, B. C., W. I Mites, and A, 1. €. Grecen, Encrgy Jdeposition ot protons

in melecular nitrogen and applications to proton auroral phenomena, .J.

(2(‘«)4{»].)‘1._]!("-.. S, 6695 10973,

il




Jacchia, L. G., Thermospheric temperature, density, and compositicn: New
models, Smithson. Astrophys. Cbscrv. Spcc. Rept. 375, Cambridge. Mass.,

1977.

Jasperse, J. R. and D. J. Strickland, Approximate analytic solutions tur the
rrimary avrcral clectron flux and related quantitics, 1979,

fcNeal, R. J. and J. H. Eirely, Laborsatory studics vt collisions ¢f cnergetic
H and hydrogen with atmespheric constituenty, Rev. Geophys. Spocc Phys.
11, 033, 1973. -]

Vallance Joncs, A.., Aurcra, D. Reidel, Dordrecht, Holland, 1974.

47




<
—
am]
Z
o
c
<

48



We change over to spherical coordinates in velocity space using

)

V, TV cosn, v, svsing, v dvydv, o vidy o sino do
aF \Y alf al % ok

oh _ 'n oh ~ oh 4 oh
vy, v v Wv v v

Then the expression tor N becomes

h

~ne(m+1v ) 1 J“(k vsint /) BFI
N = —— 2{ dv v do sine --='boie o — - :
h o wriv -k veost-ni o av be
I]:—ll 3‘;
!i
/
B JE :
1. ] 4
. ‘j dvov oo (AD) '3
m av
O ll
. . . . L2 . . . fi
taking into account the identity » J7 = 1. Lot us consider the first integral.
non
With the substitution
]
E
\ 0 ]
: — = - ] dt expl-i(mtiv, -k veoso-m)t!
m+1vh—k”vcose-nw h n
1
|4
and using the addition theorem |
i
40t
in b ‘;‘ 12 2 p(2ind 3
Jo(d sin b) = s .n(d/ ) exp(2inh) 1
ll?_ln
b
we can carry out the integration with respect to 0. The result s y
H
® o h ¢ sin Av
I = -21 f dv —~)—:l)~ / dt KT ('Ap{»l(uwl\» Yul (A2} F
o —o |
|
. |
2 y D 2 172
where A = [k“T) + (4kl/u") sin“Q1/2] . Integrating by parts with respect
to v we obtain
o o
I =2i f dv F)h(V) jr d1 cosAv 0xp{—i(m+ivh)1l (AN
. ~ t) ¢ — A
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In the case K, =0, we can use the identity
+o
cns{(._’klv//sz) sinia/ 2t o= ZJ. (21\'Lv/sz) exp(ing) (Ad)

2n

n=-w
and integrate with respect to 1. The result is
s

Y J, 2k v/)
1 - -2 Z f dv F (v) =4 T (AS)
oh w+1 vh -ny

n=-—« <0

Using (AL) in { Al) we get

Hixr
o R4 ! )

No- e e vy +iv Lo H YD (A0

i m R S Ton - o) 4"‘,. wt iy NSl )

Following the procedure Teading up to lLig. ( A2), we get

o [§] .
y - oo R , . §.'Lj.\.‘i \ BN I
Ih 1 [ dv v Ioh(\) ‘_/;» dt A expi 1((.+1vh)11 (A7)

oh 0

Vv
Writine <in Av/A - f dv’® cosAv T and pertforming the integration with respect
(]
to 1 using Eq. (A1), we obtain

- iv - v
0 P b Z _h dv v I v, (2k v/ A8
h n v =Tl v ()h(v) f v '.Zn(‘ RS (AS)
oh n=-w h o 0
Finally, using
X
f“ dx 'l_’n(‘\ ) - Z ".2n+._‘|)+l(x)
p=0

o

40 .
~ (RY B B
1 \ h \
) R oL : ) 1)
L o, iy Sl f wovro Z Do Bhya A9

cn
L oh n - 1 0 pro




TABLE 1

Maximunt collisionless growth rate Y

, collisional damping

rate w., and other parameters ol the upper hybrid instability

as a function of altitude, for BO =

0,356,

Here, K.L( kl_\'o/:)

and KL/K“(zEL/k") refer to the values tor which maximum growth

rate i~ obtained.

Altitude -1 -1 -1 B . .
(km) u)pc/sl wH(s ) \)m(a ) mi(.s } Ym(s ) kL I\L/ "
A__ S LN R B B
o 4. 7 3 2 3 ‘ -
120 3.22 2.08 x 10 1.5 x 10 8.16 x 10 1.19 x 10 g.8 , 19.5
R B L
N N -
130 5.68 2.35 x l()7 7.53 x 1071 4.02 x I()“’ 04 x 107 o 5«'15.‘3
— - — ﬁ’—-——m»—- »w-"-——-———-—A-————-- —— - [ ——
. . 7 2 _ 2 3
140 1.3 2.72 x 10 4.206 x 10 ‘ 2.2 x 10 J.08 x 10 0.8 | 2103
1
; !
]
) y g !
170 5.16 5.24 x 107 1.14 x 107 “ 0.6 x 107 | 4.79 x l()“ ]Z.Sli 1.1
Lo 1 —




TABLE 2

Maximum collisionless growth rate Yin? collisional
damping rate, and other parametcers of the electron
cyclotron instability as a function of altitude,

for B = 0,350.
o

H
Altitude oo g2 ‘ -1 -1 -1
(km) ‘ w/N=n .Pc/su-(n -1) \)m(s ) mi(s ) ym(s ) km
— e
] , 4 - 3 2
-100 1.73 1.4 x 10 4.37 x 10 1.48 x 10 4.0
! 3 3 3
~110 ; 3 2.83 4.32 x 10 1.2 x 10 7.28 x 10 5.8
| |
< | . 2 . 2 | 4|
130 4 3.87 7.53 x 10 2.0 x 10 2.89 x 10 J 7.1
! - ——
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